Promising wet chemical strategies to synthesize Cu nanowires for emerging electronic applications.
نویسندگان
چکیده
Copper nanowires (Cu NWs) are of particular interest for application as transparent and flexible conducting electrodes in 'see-through' and/or 'deformable' future electronics due to their excellent electrical, optical, and mechanical properties. It is necessary to develop reliable and facile methods to produce well-defined Cu NWs prior to their full exploitation. Among the wide variety of methods available to generate Cu NWs, solution-based synthesis routes are considered to be a promising strategy because of several advantages including fewer constraints on the selection of precursors, the solvent and reaction conditions, and the feasibility of large-scale low-cost production. Here, we provide a thorough review of various recently developed synthetic methodologies to obtain Cu NWs, with particular emphasis on wet chemical synthesis approaches including a hydrothermal route, reduction of metal precursors, and catalytic synthesis. The emerging applications of Cu NWs including transparent electrodes and flexible/stretchable electronics are also discussed, followed by brief comments on the remaining challenges and future research perspectives.
منابع مشابه
Ultrathin Epitaxial Cu@Au Core-Shell Nanowires for Stable Transparent Conductors.
Copper nanowire networks are considered a promising alternative to indium tin oxide as transparent conductors. The fast degradation of copper in ambient conditions, however, largely overshadows their practical applications. Here, we develop the synthesis of ultrathin Cu@Au core-shell nanowires using trioctylphosphine as a strong binding ligand to prevent galvanic replacement reactions. The epit...
متن کاملA Brief Review of the Synthesis of ZnO Nanoparticles for Biomedical Applications
Carbon-based chemical substances persistence can contribute to adverse health impacts on human lives. It is essential to overcome for treatment purposes. The semiconducting metal oxide is Zinc Oxide (ZnO), which has excellent biocompatibility, good chemical stability, selectivity, sensitivity, non-toxicity, and fast electron transfer characteristics. The ZnO nanoparticles are more efficient com...
متن کاملWet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries.
Using a soft-template assisted method, well-organized Cu/TiO(2) nanoarchitectured electrode materials with copper nanowires as their own current collectors are synthesized by controlled hydrolysis of tetrabutyl titanate in the presence of Cu-based nanowires, and investigated by SEM, TEM, XRD, Raman spectroscopy and electrochemical tests towards lithium storage. Two types of Cu/TiO(2) nanocompos...
متن کاملEffect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics
Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...
متن کاملReduced graphene oxide wrapped core-shell metal nanowires as promising flexible transparent conductive electrodes with enhanced stability.
Transparent conductive electrodes (TCEs) are widely used in a wide range of optical-electronic devices. Recently, metal nanowires (NWs), e.g. Ag and Cu, have drawn attention as promising flexible materials for TCEs. Although the study of core-shell metal NWs, and the encapsulation/overcoating of the surface of single-metal NWs have separately been an object of focus in the literature, herein fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 41 شماره
صفحات -
تاریخ انتشار 2015